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Final:

 Performance problems
 ALU design
 Data Path and control
 Pipelining design and hazard
 Cache memory
 Virtual memory
 Parallel Computing

Comprehensive



Making a faster adder Full Adder
Let's look at a 1-bit ALU for addition:
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What is the propagation delay of a 32-bit adder?



Problem with Ripple Carry  

 Is a 32-bit ALU as fast as a 1-bit ALU?
 Is there more than one way to do addition?

 two extremes:  ripple carry and sum-of-products

 Can you see the ripple?  How could you get rid of it?

c1 = b0c0 + a0c0 + a0b0

c2 = b1c1 + a1c1 + a1b1 c2 = 
c3 = b2c2 + a2c2 + a2b2 c3 = 
c4 = b3c3 + a3c3 + a3b3 c4 = 

Not feasible!  Why?



Carry-lookahead adder
An approach in-between our two extremes
 c1 =  b0c0 + a0c0 + a0b0 = (b0 + a0)c0 + a0b0

 If we didn't know the value of carry-in, what could we do?
 When would we always generate a carry? gi = ai bi 

 When would we propagate the carry?                pi = ai + bi

Did we get rid of the ripple?
c1 = g0 + p0c0 
c2 = g1 + p1c1 c2 = 
c3 = g2 + p2c2 c3 = 
c4 = g3 + p3c3 c4 =
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c4 = g3 + p3g2 + p3p2 g1 + p3 p2 p1 g0 + p3 p2 p1p0 c0



Carry Look Ahead Design trick
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16 Bit Carry Look Ahead
 gi = ai bi

 pi = ai + bi

 c1= g0 +p0 c0

 c2 = g1 + p1 g0 + p1p0c0

 c3 = g2 + p2 g1 + p2 p1 g0 + p2 p1p0 c0

 c4 = g3 + p3g2 + p3p2 g1 + p3 p2 p1 g0 + p3 p2 p1p0 c0

G0 P0

 G0 = g3 + p3 g2 + p3 p2 g1 + p3 p2 p1 g0 P0 = p3 p2 p1 p0

 G1 = g7 + p7 g6 + p7 p6 g5 + p7 p6 p5 g4 P1 = p7 p6 p5 p4

 G2 = g11 + p11 g10 + p11 p10 g9 + p11 p10 p9 g8         P2 = p11 p10 p9 p8

 G3 = g15 + p15 g14 + p15 p14 g13 + p15 p14 p13 g12 P3 = p15 p14 p13 p12



16 Bit Carry Look Ahead (Cont.)

 C1 = G0 + P0C0 

 C2 = G1 + P1C1 C2 = 
 C3 = G2 + P2C2 C3 = 
 C4 = G3 + P3C3 C4 =

 C1 = c4 = G0 + P0 c0

 C2 = c8 = G1 + P1 G0 +  P1 P0 c0

 C3 = c12 =G2 + P2 G1 +  P2 P1 G0 +  P2 P1 P0 c0

 C4 = c16= G3 + P3G2 + P3 P2 G1 + P3 P2 P1 G0 +  P3 P2 P1 P0 c0



16 Bit Carry Look Ahead (Cont.)



6) The following diagram depicts a vector processor for matrix – vector multiplier. Devise a vector processor 
for a matrix – matrix multiplication. 
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 Taking advantage of spatial locality:

Direct Mapped Cache

Address (showingbit positions)

16 12 Byte
offset

V Tag Data

Hit Data

16 32

4K
entries

16 bits 128 bits

Mux

32 32 32

2

32

BlockoffsetIndex
Tag

31 16 15 4 32 1 0





Associativity: Reducing cache misses by more flexible 
placement of blocks

Decreasing Miss Ratio with Associativity

Direct Set Associative Fully Associative

Data

Cache Location



4-Way Associative Cache Organization
Address

22 8

V TagIndex
0
1
2

253
254
255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0



Associative Caches
 Fully associative

Allow a given block to go in any cache entry
Requires all entries to be searched at once
Comparator per entry (expensive)

 n-way set associative
Each set contains n entries
Block number determines which set

(Block number) modulo (#Sets in cache)

Search all entries in a given set at once
n comparators (less expensive)



Associativity Example
Assume word size = 1 byte
Compare 4-block caches
Direct mapped, 2-way set associative,

fully associative
Block access sequence: 0, 8, 0, 6, 8

Direct mapped

Block 
address

Cache 
index

Hit/miss Cache content after access
0 1 2 3

0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]



Associativity Example
 2-way set associative

Block 
address

Cache 
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

 Fully associative
Block 

address
Hit/miss Cache content after access

0 miss Mem[0]
8 miss Mem[0] Mem[8]
0 hit Mem[0] Mem[8]
6 miss Mem[0] Mem[8] Mem[6]
8 hit Mem[0] Mem[8] Mem[6]



Spectrum of Associativity

Assume one 
byte word size.

For a cache 
with 8 entries. 
Assume using 
the “least 
recently used” 
replacement 
strategy 7, 4, 17, 
12, 4, 25, 7, 13



Pitfall: Amdahl’s Law

unaffected
affected

improved T
factor timprovemen

TT 

Example: Suppose a program runs in 100 seconds on a machine, with  
multiply responsible for 80 seconds of this time.   How much do we 
have to improve the speed of multiplication if we want the program to 
run 4 times faster?



Pipeline with Exceptions



Pitfall: Amdahl’s Law

208020 
n

 Can’t be done!

unaffected
affected

improved T
factor timprovemen

TT 

 How much improvement in multiply performance to 
get 5× overall?

 Improving an aspect of a computer and 
expecting a proportional improvement in 
overall performance

2080
4

100


n
 n = 16



Amdahl’s Law – Parallel Processing Version

Limit on speed-up according to Amdahl’s law. 
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