
EGC442
Class Notes
5/9/2023

Baback Izadi
Division of Engineering Programs
bai@engr.newpaltz.edu

Final:

 Performance problems
 ALU design
 Data Path and control
 Pipelining design and hazard
 Cache memory
 Virtual memory
 Parallel Computing

Comprehensive

Making a faster adder Full Adder
Let's look at a 1-bit ALU for addition:

a

b

Sum = a  b  cin
Cout = a b + (a  b) cin

Cout = a b + a cin + bcin
+

Carry In

CarryOut

Sum

a0

b0
+

Carry In

Sum0

a1

b1
+ Sum1

a31

b31
+

CarryOut

Sum31
What is the propagation delay of a 32-bit adder?

Problem with Ripple Carry

 Is a 32-bit ALU as fast as a 1-bit ALU?
 Is there more than one way to do addition?

 two extremes: ripple carry and sum-of-products

 Can you see the ripple? How could you get rid of it?

c1 = b0c0 + a0c0 + a0b0

c2 = b1c1 + a1c1 + a1b1 c2 =
c3 = b2c2 + a2c2 + a2b2 c3 =
c4 = b3c3 + a3c3 + a3b3 c4 =

Not feasible! Why?

Carry-lookahead adder
An approach in-between our two extremes
 c1 = b0c0 + a0c0 + a0b0 = (b0 + a0)c0 + a0b0

 If we didn't know the value of carry-in, what could we do?
 When would we always generate a carry? gi = ai bi

 When would we propagate the carry? pi = ai + bi

Did we get rid of the ripple?
c1 = g0 + p0c0
c2 = g1 + p1c1 c2 =
c3 = g2 + p2c2 c3 =
c4 = g3 + p3c3 c4 =

EGC432 SUNY New
Paltz

c4 = g3 + p3g2 + p3p2 g1 + p3 p2 p1 g0 + p3 p2 p1p0 c0

Carry Look Ahead Design trick

a0

b0

S
0g

p

g = a b
p = a + b

a1

b1

S1
g
p

a2

b2

S
2g

p

a3

b3

S3
g
p

cin

c1= g0 +p0 c0

c2 = g1 + p1 g0 + p1p0c0

c3 = g2 + p2 g1 + p2 p1 g0 + p2 p1p0 c0

C4 = . . .

16 Bit Carry Look Ahead
 gi = ai bi

 pi = ai + bi

 c1= g0 +p0 c0

 c2 = g1 + p1 g0 + p1p0c0

 c3 = g2 + p2 g1 + p2 p1 g0 + p2 p1p0 c0

 c4 = g3 + p3g2 + p3p2 g1 + p3 p2 p1 g0 + p3 p2 p1p0 c0

G0 P0

 G0 = g3 + p3 g2 + p3 p2 g1 + p3 p2 p1 g0 P0 = p3 p2 p1 p0

 G1 = g7 + p7 g6 + p7 p6 g5 + p7 p6 p5 g4 P1 = p7 p6 p5 p4

 G2 = g11 + p11 g10 + p11 p10 g9 + p11 p10 p9 g8 P2 = p11 p10 p9 p8

 G3 = g15 + p15 g14 + p15 p14 g13 + p15 p14 p13 g12 P3 = p15 p14 p13 p12

16 Bit Carry Look Ahead (Cont.)

 C1 = G0 + P0C0

 C2 = G1 + P1C1 C2 =
 C3 = G2 + P2C2 C3 =
 C4 = G3 + P3C3 C4 =

 C1 = c4 = G0 + P0 c0

 C2 = c8 = G1 + P1 G0 + P1 P0 c0

 C3 = c12 =G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 c0

 C4 = c16= G3 + P3G2 + P3 P2 G1 + P3 P2 P1 G0 + P3 P2 P1 P0 c0

16 Bit Carry Look Ahead (Cont.)

6) The following diagram depicts a vector processor for matrix – vector multiplier. Devise a vector processor
for a matrix – matrix multiplication.

a a a a

a a a a

a a a a

a a a a

 00 01 02 03

 10 11 12 13

 20 21 22 23

 30 31 32 33

x

x

x

x

0

1

2

3

y

y

y

y

0

1

2

3

 

Delay

 Taking advantage of spatial locality:

Direct Mapped Cache

Address (showingbit positions)

16 12 Byte
offset

V Tag Data

Hit Data

16 32

4K
entries

16 bits 128 bits

Mux

32 32 32

2

32

BlockoffsetIndex
Tag

31 16 15 4 32 1 0

Associativity: Reducing cache misses by more flexible
placement of blocks

Decreasing Miss Ratio with Associativity

Direct Set Associative Fully Associative

Data

Cache Location

4-Way Associative Cache Organization
Address

22 8

V TagIndex
0
1
2

253
254
255

Data V Tag Data V Tag Data V Tag Data

3222

4-to-1 multiplexor

Hit Data

123891011123031 0

Associative Caches
 Fully associative

Allow a given block to go in any cache entry
Requires all entries to be searched at once
Comparator per entry (expensive)

 n-way set associative
Each set contains n entries
Block number determines which set

(Block number) modulo (#Sets in cache)

Search all entries in a given set at once
n comparators (less expensive)

Associativity Example
Assume word size = 1 byte
Compare 4-block caches
Direct mapped, 2-way set associative,

fully associative
Block access sequence: 0, 8, 0, 6, 8

Direct mapped

Block
address

Cache
index

Hit/miss Cache content after access
0 1 2 3

0 0 miss Mem[0]
8 0 miss Mem[8]
0 0 miss Mem[0]
6 2 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

Associativity Example
 2-way set associative

Block
address

Cache
index

Hit/miss Cache content after access
Set 0 Set 1

0 0 miss Mem[0]
8 0 miss Mem[0] Mem[8]
0 0 hit Mem[0] Mem[8]
6 0 miss Mem[0] Mem[6]
8 0 miss Mem[8] Mem[6]

 Fully associative
Block

address
Hit/miss Cache content after access

0 miss Mem[0]
8 miss Mem[0] Mem[8]
0 hit Mem[0] Mem[8]
6 miss Mem[0] Mem[8] Mem[6]
8 hit Mem[0] Mem[8] Mem[6]

Spectrum of Associativity

Assume one
byte word size.

For a cache
with 8 entries.
Assume using
the “least
recently used”
replacement
strategy 7, 4, 17,
12, 4, 25, 7, 13

Pitfall: Amdahl’s Law

unaffected
affected

improved T
factor timprovemen

TT 

Example: Suppose a program runs in 100 seconds on a machine, with
multiply responsible for 80 seconds of this time. How much do we
have to improve the speed of multiplication if we want the program to
run 4 times faster?

Pipeline with Exceptions

Pitfall: Amdahl’s Law

208020 
n

 Can’t be done!

unaffected
affected

improved T
factor timprovemen

TT 

 How much improvement in multiply performance to
get 5× overall?

 Improving an aspect of a computer and
expecting a proportional improvement in
overall performance

2080
4

100


n
 n = 16

Amdahl’s Law – Parallel Processing Version

Limit on speed-up according to Amdahl’s law.

0

10

20

30

40

50

0 10 20 30 40 50
Enhancement factor (p)

S
pe

e
du

p
(s

)

f = 0

f = 0.1

f = 0.05

f = 0.02

f = 0.01

s =

 min(p, 1/f)

1
f+ (1 – f)/p

f = fraction
sequential

p = speedup
of the rest

s =
Exec Time 1 Processor

Exec Time P Processors

